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Abstract An exact analogue of the method of averaging in classical mechanics is constructed 
for self-adjoint opeTators It is shown to be completely equivalent to the usual Rayleigh- 
Schrodinger perturbation theory bul gives the sums over intermediate states in closed-form 
expressions. The anharmonic oscillator and the Henon-Heiles system are treated as examples 
to illustrate the quantum averaging method. 

1. Introduction and motivation 

The failure to obtain exact solutions for most mechanical systems of interest (e.g. planetary 
motion) has prompted the search for perturbation techniques almost immediately after the 
conception of Newtonian mechanics (see [ 11 for some history on the subject). At about 
the turn of the last century Lindstedt [Z], Poincar6 [3], and later von Zeipel [4] developed 
a perturbation method for classical Hamiltonian systems using an averaging procedure in 
phase space. Despite its lack of convergence in many cases this method, which we shall 
henceforth refer to as the Poincar6-von Zeipel method, has been widely used, since it yields 
at least asymptotic expansions. 

Conceming the ability to find exact solutions nothing much changed with the advent 
of quantum mechanics. There it turned out to be equally important to develop perturbation 
methods and this was done simultaneously with the beginning of quantum mechanics 
by Schrodinger 1.51. Due to previous contributions to similar perturbation techniques in 
other wave equations by Lord Rayleigh this theory has been named RayleighSchrodinger 
perturbation theory and was later given a rigorous mathematical basis in the work of Kato 161 
and Rellich 171. 

In this paper it is shown that the two methods are identical. More precisely, it will 
be shown that in quantum mechanics an exact analogue of the classical Poincar6-von 
Zeipel method can be formulated with the help of an averaging techique for self-adjoint 
operators analogous to the classical method and that the resulting quantum PoincarGvon 
Zeipel perturbation theory is identical to the Rayleigh-Schrodinger theory. 

The analogy between the classical and quantum cases is based entirely on the structure 
of the equations appearing in the algorithm and the structure of the method used to solve 
them (averaging). The starting point in the classical case is a Hamiltonian function on phase 
space with a perturbing Hamiltonian, whereas in the quantum case we start from a self- 
adjoint Hamiltonian operator with a perturbing operator. If and how the two Hamiltonians 
are related is of no interest here. No quantization or other quantum-classical map (e.g. 
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semi-classical correspondence) is needed to consmct the quantum analogue of the classical 
Poincar&von Zeipel theory. 

Viewing RayleighSchrodinger as a quantum version of the classical Poincar&von 
Zeipel method yields (apart from a purely conceptual viewpoint) one possible advantage: it 
gives closed expressions for the sums over intermediate states which appear in the corrective 
terms for the eigenvalues and eigenfunctions. 

The method of quantum averaging has also been used to construct a quantum 
analogue of Kolmogorov's superconvergent perturbation theory IS]. This new quantum 
'superconvergent' perturbation theory is substantially different and from the standard 
RayleighSchrodinger method and initial numerical studies in some examples indicate much 
better convergence properties [9]. While using quantum averaging to constmct analogues of 
the classical Poincar6-von Zeipel and superconvergent methods they needed to be compared 
with existing perturbation methods in quantum mechanics. In [9] we have shown that the 
quantum superconvergent method yields a new kind of perturbation theory and in this 
paper we show that the quantum Poincar6von Zeipel method is identical to the standard 
RayleighSchrodinger theory. 

In classical mechanics the Poincarbvon Zeipel series is in most cases divergent and 
yields only an asymptotic series. This is similar in its quantum equivalent the Rayleigh- 
Schrodinger series. Since we prove the equivalence of the two methods we shall not 
state all technical details necessary to make all steps rigorous but refer the reader to 
the vast mathematical literature dealing with the RayleighSchrodinger (or Kato-Rellich) 
perturbation theory (see, e.g., [lo]). Just as certain quantities diverge in standard Rayleigh- 
Schrodinger theory (in cases where convergence conditions fail) the power expansions in 
6 formally written down here may not converge in which case the perturbation algorithm 
gives only asymptotic information, all sums have to be replaced by finite ones up to N ,  and 
equations have to be read modulo O(G~+ ' )  for any finite N .  

The paper is organized as follows. 
In section 2 we present the classical Poincark-von Zeipel perturbation theory and method 

of averaging in such a way that it can easily be generalized to quantum mechnics which is 
done in section 3. 

In section 4 we apply the quantum Poincar6von Zeipel and averaging method to a 
Hamiltonian with pure point spectrum, we show that up to second order all results from 
the RayleighSchrodinger theory are reproduced and discuss two examples which illustrate 
the method and show possible advantages of this new way of constructing the Rayleigh- 
Schrodinger series. 

In section 5 the full equivalence of the two perturbation expansions in all orders is 
proven. 

Finally, in section 6 we discuss previous constructions mimicking classical perturbation 
expansions in quantum mechanics by Kummer [12,13], Ali [14], Eckhardt [IS], and Ben 
Lemlih and Ellison [16] and their relation to the present method and conclude with some 
remarks about future investigations. 

2. Classical Poincar6von Zeipel perturbation theory 

In this section we will describe the classical Poincar&von Zeipel perturbation theory along 
with the method of averaging in a geometric manner such that its generalization to quantum 
mechanics is almost self-evident. To avoid later confusion we will use lower-case Latin 
letters for the classical situation. The unperturbed Hamiltonian ho is a function on phase 
space y which is equipped with a Poisson bracket structure { .  , . 1. ho is assumed to be 
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sufficiently smooth, integrable and non-degenerate in the sense of Liouville-Arnold, i.e. 
it has n := f dim y functionally independent constants of motion 61, .  . . , b, which are in 
involution, define the invariant tori and have the property that 

lho, g) = 0 * g = g(bi , .  . , , b o ) .  

Furthermore, let 

* € P  
h(E) := -hp 

p=o P! 
be the perturbed Hamiltonian where the perturbations h,, p > 1 are assumed to be 
sufficiently smooth functions on y .  The idea of PoincarC-von Zeipel perturbation theory is 
to look for an €-dependent generating function 

(with <-independent smooth functions W I )  such that - w ( E )  generates a canonical flow E ( < )  
with 'time' E .  Then ~ ( 6 )  := ( (€)-I  is a transformation on y determined uniquely by 

d 
de 
- - (D(E)*  = ad W ( E )  o (~(6)" (3) 

(o(0) = id, (4) 

&)'a := a 0 (P(€). ( 5 )  

ad f(g) := (f7 g) (6) 
and for future use we remark that (ad w(€))P := ad W ( E )  0 .  . o ad W ( E )  ( p  times). For later 
use we shall need an expansion of cp' in terms of some differential operators t ,  independent 
of E :  

and gives rise to the following action on phasespace functions a:  

Here ad f(g) is defined for any two phase-space functions f, g as 

* € P  

p !  
&)* = --t 

P=o 

The t,, are then recursively defined through to = id, and 

(7) 

Acting with ~ ( 6 ) "  on the perturbed Hamiltonian h(E) gives a new Hamiltonian 

k(E) := $I(€)"€) (9) 

which is assumed to be analytic in 6 :  

and for which one finds 

ko = ho 
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where fi =hi and for p > 2 

If we had a solution $ ~ ( ~ ) ( t )  : y -+ y of the motion with Hamiltonian k(6)  then 

$h(h(r)(f) := d E )  0 $!44(r) '+'(E)-' (14) 

would give us the desired solution for the perturbed Hamiltonian h(6). In general it is not 
possible to find ( ~ ( 6 )  such that a solution for k ( 6 )  may be found. However, we may choose 
the w! successively in such a manner that each k,, is integrable, i.e. (since ho is integrable 
and non-degenerate) such that 

ad ho(kp) = 0 V p  . (15) 

In this way one can trivially solve the equations of motion for k(6) up to any finite order 
in E and thus obtain via (14) solutions of h(c )  up to the same order in e .  

Thus we have to find the wp successively such that 

kp = ad wp(h0) + f p  (16) 

ad ho(k,) = 0. (17) 
Equation (16) and (17) are solved by the method of averaging [17,18]. Let ,3 = (PI,. . , , A )  
be the coordinates canonically conjugate to the integrals b = (bl,. . . , bn). Then the flow 
(oho generated by the unperturbed Hamiltonian ho expressed in the coordinates (b. B)  is 

where 

gives the frequencies of the unperturbed motion which we assume to be independent over the 
rationals (non-resonant) for the given bo, i.e. c,m(bo) = 0 + c = 0 for any c = (CI, . . . , c,,) 
with integer cj. Let g be any function on phase space w,hich has the Fourier decomposition 

and define the phase-space functions 
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and it is easy to see that 

H = ad (s(g))(ho) + g (25) 

adho@ = 0. (26) 

With this construction we now make the following choice for w p  in (16): 

then k, = commutes with ho as desired. The important point to note here is that we 
have formulated the basic (averaging) constructions (21) and (22) necessary to solve (16) 
and (17) in a coordinate-free way. This geometric description using the time average is 
immediately suitable for generalization to self-adjoint operators, i.e. to quantum mechanics. 
It should be noted, however, that (27) is not the only possible solution of (16) and (17) 
since 

(28) w; := w p  i up 

is also a solution of our problem as long as 

adu,(ho) = 0.  

This non-uniqueness will also emerge in the quantum mechanical setting since it is aIso 
present in Kato's rigorous exposition of  RayleighSchrodinger perturbation theory [6]. 

3. Quantum Poincar&von Zeipel perturbation theory and averaging 

Now we shall develop the quantum mechanical analogue of the classical theory presented 
in the previous section. For this purpose we use upper-case (capital) Latin letters to denote 
operators on some Hilbert space I-'. Let HO be the unperturbed Hamiltonian operator which 
is assumed to be diagonalized in some basis and let 

be the perturbed Hamiltonian. Here we do not impose any conditions (like, e.g., 
boundedness) on the perturba!ions H,,, p > 1, but proceed purely on a formal level. A 
mathematically rigorous justification of each step is notoriously intricate and will not be 
attempted here because it would completely obscure the basic ideas of the method. Since 
ultimately we shall prove the equivalence of this method to the usual RayleighSchrodinger 
perturbation theory the conditions of the latter theory needed to guarantee convergence (see, 
e.g., [IO]) will be sufficient to make the quantum Poincad-von Zeipel perturbation theory 
convergent as well. In analogy with the classical situation we seek a self-adjoint generator 
(operator) 

such that - W ( c )  induces the unitary flow E(<) with %me' E ,  i.e. 

d I 

dr  
-E(€) = ;W(E)8(€) E(O) = n. 
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Then @ ( E )  := E(<)-] is the unique solution of the initial value problem 

(33) 
d 

- @ ( E ) *  = A D  W ( E )  o @ ( E ) *  
d6 

@(O) = n (34) 

@(<) *A  := @ ( E ) - '  A @ ( E )  (35) 

where @ ( E ) *  acts on any operator A via 

and where AD F(G) is now defined as 

ADF(G) := i [ F ,  GI 
for any two operators F.  G (again we omit the technical details necessary to make (36) 
well defined for unbounded operators) and as in the classical case (AD W(E))P := 
AD W ( E )  0.. . o AD " ( E )  ( p  times). 

As in the classical case, it  will be useful to expand @* in terms of €-independent 
operators Tp: 

where the T, are then recursively defined through TO = fl and 

Note that @ ( E ) *  and thus the Tp act on operators, whereas @ ( E )  itself is a transformation 
on Hilbert space which can also be expanded as 

and where the following recursive relation for the GP can be derived from (32): 

and 00 = 1. 
Transforming the perturbed Hamiltonian N ( E )  with @ ( E )  gives a new Hamiltonian 

K ( 6 )  := @ ( E ) * H ( E )  = @(E)- 'H(E)@(<)  (41) 
which is assumed to he analytic in E :  

and for which one finds 

KO = Ho 

K p  = AD W,(Ho) + F, p 2 1 

with Fj = ff1 and for p 2 2 
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All these equations are exactly analogous to the classical case, but it should be emphasized 
that they are perfectly well defined operator equations. But how are we to choose W 
now? If we could diagonalize K ( s )  up to a given finite order in E ,  we could read off its 
eigenvalues and eigenvectors to that order as well, but this means that we have found the 
eigenvalues and the eigenvectors of the perturbed Hamiltonian H ( c ) ,  since by (41) H and 
K are unitarily equivalent. Before we write this out in formulae let us first see how we 
can diagonalize K order by order using the method of quantum averaging. It is obvious 
that the necessary and sufficient condition for diagonalization is the equivalent of (17), i.e. 
requiring 

A D  Ho(K,) = 0 p 2 I (46) 
means that all K ,  commute with HO and thus HO and K ,  can be diagonalized simultaneously, 
hence K can be made diagonal to any finite order N in E .  Consequently, in order to 
diagonalize K to any finite order we need to solve the quantum analogue of (16) and (17), 
i.e. 

K ,  = A D  U',(ho) t Fn (47) 

AD Ho(K,) = 0 .  (48) 

This, too, is done in a manner analogous to that in the classical case. Let @ H ~  be the unitary 
flow generated by the unperturbed Hamiltonian HO such that for any operator G 

(49) 

where the last equation introduces a simplified notation. Suppose now that G is such that 

@ ~ ~ ( - t ) *  G = exp(-ftHo) G exp(ktH0) =: G(t )  

G := lim - d tG( t )  
7-m T I' - 

S(G) := lim - L'd t  Jd'ds ( G ( s )  - 
7-m T 

exist, and such that 
G ( T )  - G 

lim = o  
T-m T 

then it follows that: - 
G = A D ( S ( G ) ) ( H o )  t G 

A D  H&) = 0. 

We first prove (54): 
i ADH~G)  = pO.Z1  

(53) 

(54) 
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by assumption. Moreover 

T 
= lm il dt ( G ( i )  - G) 

T-m T 
- 

= G - G  

which proves (53). Equations (50)-(54) are the exact quantum analogue of the classical 
averaging technique with the noteworthy absence of any non-resonance condition. Thus for 
any p > 1 equation (47) and (48) are successively solved by 

Wp = S(Fp) (55)  

K , , = % .  (56) 
Using (45) we may simplify 7 by noting that 

-- 
AD WI+I(F~-I-I) = A D W I + I ( F ~ - I - I )  (57) -- 

and with (55) we have W1+, = S ( f i + ~ ) .  Assuming continuity of the maps S and 7 one can 
formally show that S ( B )  = S(z) for any operator E for which S ( B )  and z exist. On the 
other hand it is evident that S(z) = 0. Putting these together shows that 

AD Wt+i(Fp-/-l) = 0 (58) 

- 

- 
such that the expression (56) for K,, does not contain contributons arising from averaging 
the terms AD W ~ + ~ ( K , , - ~ - i )  in the expression (45) for the Fp. 

Let us summarize what we have done so far: Given a perturbed Hamiltonian H ( e )  = 
$H,, we have shown that choosing W,, = S(F,,) in W ( 6 )  = CEO $W,,+l leads to 

and the 7 all commute with the unperturbed operator HO and are given by 
- 
Fi =?s; (60) 

The first few terms in the expansion (59) are 

Fo = 0 KO = Ho 

Fl = H I  K I  = H i  

F Z = H ? + ~ [ W I , K I + H ~ ~  K z = % + i [ W ~ , H i l  

- 
.- 
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5% and Ho can be simultaneously diagonalized for any where W ,  = S ( H , ) .  Hence, 
finite N .  Let us introduce the following notation: 

K N ( € ) l A N ( € )  = E/ ! (€ ) lAN(€)  (66) 

and 

H(~)lj)(€) = Ej (€) I j ) (€ ) .  (67) 

H ( € ) @ N ( € ) l j ) N ( € )  = E f J ( € ) @ N ( € ) l j ) N ( € )  + O(EN+’) 

Evidently 

(68) 

i.e. the eigenvalues E,(€) and eigenvectors l j ) ( c )  of the perturbed Hamiltonian H ( E )  are 
approximated as follows: 

E,(€) = E/!(€) + O(€N+’) 

I j ) ( c )  = aN(<)1 j ) N ( e )  + o(cN+’). 

(69) 

(70) 

Hence, we have used the quantum analogue of the averaging method to construct a quantum 
mechanical perturbation theory. Just as in the classical case, however, the solutions for Wp 
constructed here are not the only ones. One encounters the same non-uniqueness as given 
by (28) and (29) in the classical case. 

4. Examples: discrete spectra 

4.1. General second-order terms 

In this section we will apply the theory developed in section 3 to the case of a Hamiltonian 
HO which is assumed to have a purely discrete spectrum with finite degeneracy 

HO = tj,a)E,O(a,jl (71) 
j ; U E D ,  

where the sum over a runs over Dj := { 1 ,  . . . , dj = dim(Eig(H0. E,”))). For any self-adjoint 
G one then obtains 
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Using (621, (72), and (73) one finds after straightforward calculations 

~ ’ ( e )  = 1j.a) ( ~ ; + e ( a ,  j l H ~ l j , f i ) ) ( A j ~  
i ;u ,P@,  

(74) 

Consequently the eigenvalues Eiu(c )  of K*(c) are determined to be solutions of the secular 
equation of dj-dimensional matrices: 

det(E’6,p - (a, j lK’(c)l j ,B))  = O  (75) 

which coincides with the usual RayleighSchrodinger result. The corresponding 
eigenvectors of K 2 ( c )  are then 

and one has for the eigenvector l j .  a)(€) of H ( r ) :  

with 

and WZ = S(Hz+ ~ [ W I ,  %+ HI]) which we shall not write down here but which inserted 
into (78) yields the corrections to the eigenvctors to second order known from Rayleigh- 
SchrBdinger perturbation theory in the case of a non-degenerate spectrum. In this case we 
see from (77) that the eigenvectors of @(E) and HO coincide: l j )*(<)  = l j ) .  In fact, since 

and [H,, KN] = 0. V N  we have by induction 

in the non-degenerate case. 
The general equivalence of the quantum version of the Poincar.6-von Zeipel perturbation 

theory to the standard RayleighSchrodinger perturbation theory will be proven in section 5. 
The fact that the corrections to the eigenvalues in the Poincarhon Zeipel theory are derived 
from an averaging procedure may, however, provide some computational advantage since 
it gives the sums over intermediate states so common to standard perturbation theory in 
closed form. For example, the second-order term in the non-degenerate case is given by 
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4.2. Example I :  anharmonic oscillator 

For the non-degenerate case we shall illustrate the method in the example of the harmonic 
oscillator Ho = i(-G + x') with cubic perturbation HI = +x4, H,, = 0, p 2 2 
(anharmonic oscillator with h = 1) where the quantum Poincar6von Zeipel method will 
permit us to compute the sums over intermediate states and the corrections up to O(t2) 
without much effort. All calculations are straightforward if we use the operators 

d' 

1 d 

for which one finds 

a ( t )  = e'la at( t )  = e-i'af (83) 
such that 

&(t)  = - 
1 3 2 + e-4i'(ai)4 + 4e2"aHoa + 4e-"atHout) + -(Ho)' + - 

16 8 32 

- 3  2 
H I  = -(Ho)* + - 

8 32 

This formula for the correction to the eigenvalues was first derived by Heisenberg [I91 and 
is also reproduced by Kummer using his normal form approach 1121. 

4.3. Example 2: the Henon-Heiles system 

To illustrate the method for the degenerate case we apply it to the two-dimensional Henon- 
Heiles system whose unperturbed Hamiltonian is (we again choose h = 1) 

where the N,. j = 1 ,2  are the number operators and the perturbation is 

Hl(or, p )  := ~ ( X I ) * X ~  + p ( x 2 ) 3  H,, = o if p 2 2 .  (85)  
It is only for convenience that we have chosen the 'degenerate' case (i.e. equal frequencies 
for the two one-dimensional oscillators in Ho). The method is completely oblivious to that 
distinction. In this example we treat or and p as one perturbation parameter in the sense that 
LY = €5, p = E P  and E is the single perturbation parameter which we set equal to one at 
the end of the calculation. As in the case of the anharmonic oscillator it is very convenient 
to use the operators 



+cY(a$2 + 2aH014 + B(Upa2 + 2bHO?U2 t 

- (2aH0,az + occa,,2a: + 2BHozaz + fs[a2)24) ). (90) 
From this one can read off W j ( t )  and obtain after some tedious but straightforward 
calculations (which we have executed with the help of the symbolic computation language 
MAPLE) 

U N 2  11 l S N ~ ) p 2  - (t +z+- 2 

Keeping in mind that we set E = 1 and that Kl = ?r; = 0, we now have to find the 
eigenvalues E&)(ci, p )  of K2(or, 8)  = Ho+iK2 which will give us the correct eigenvalues 
of HO + HI up to second order. Let k = 0 denote the ground state (no degeneracy: (0, I ) ) ,  
k = 1 the first excited state (double degeneracy: (1, l ) ,  (1.2)), and k = 3 the second excited 
state (triple degeneracy: (2, l ) ,  (2, .t)) then we find the following eigenvalues: 

718' 13a2 9 p a  
8 24 4 

E;]**)(a, p )  = 2 - - - - - -- 
718' 1 9 d  27pu E ~ ~ , , ) ( I Y , , ¶ )  = 3 - - - - - - 8 8 4 

101 8' 15pa 1 7 d  J2025p4 - 446p202 - 16Gp + 41 a4 
4 

k 3 - - - - - - 2 E~,*) (cc ,  8 )  8 4 8 
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The results for E2 agree with those obtained by Kummer [I31 and Ali [14] (except for the 
factor of cr2 in in [14], which is probably due to a typographical error). 

5. Equivalence to RayleighSchrodinger perturbation theory 

5.1. Non-degenerate case 

In section 4 we have already seen that at least up to second order the quantum analogue 
of the Poincar6von Zeipel method and the standard Rayleigh-Schriidinger perturbation 
theory coincide. In this section we show that this is indeed true for the full perturbation 
expansions. To do this we recall briefly how the standard Rayleigh-Schrodinger expansion 
is constructed in the non-degenerate case. With the help of a suitably chosen contour integral 
in the complex E plane one can show that the projector 

on the jth eigenspace of H ( E )  is analytic in E and that for E sufficiently small (jlP,(c)l j )  > 
0, [6,10]. This projector then gives a normalized eigenvector I j ) ( E )  of H ( E )  to the 
eigenvalue E l ( € )  via 

From this one obtains 

Using the expansion for 
in E which is the usual RayleighSchrodinger perturbation series. 

the right-hand side of (96) then yields an expansion for Ei(c) 

On the other hand it  follows from (81) that 

K ( d l j )  = E j ( E ) l j )  (96) 

where K ( E )  = @ ( E ) - '  H ( E )  @ ( E )  which implies 

M E )  = @ ( E ) l j )  (97) 

such that 

Pj(E) = I j ) ( d ( E ) ( j l  = @ ( E ) ) l j ) ( j l @ ( E ) - '  . (98) 

Inserting (99) into (96) yields 

which proves the equivalence in all orders for the non-degenerate case. 
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5.2. Degenerare case 

Suppose now that Hol j ,  01) = Ejlj, CL) with possible degeneracies 01 E D, = [ I ,  . . . , 4 ] ,  
that E," is an isolated point of the spectrum ~(Ho), that Pj = l j , w ) ( o [ ,  j l  is the 
projector on the j th  eigenspace of HO and that P ~ ( E )  defined as in (94) exists and is 
analytic in E .  Then it has been shown that 16,101 

o ( ~ ( 6 )  I R ~ ~ ~ P , w )  = u ( H ( E ) )  n [ E  I I E  - E,"I c 

Pj(E) = U(E)PjU(E)-I (101) 

A(€)  := U ( € ) - I H ( € ) U ( € )  (102) 

(100) 
(where A lb~ means restriction of the operator A to the range of E )  and that there exists 
a unitary operator U(€) such that 

and 

satisfies 
f i ( € ) P j  = PI&€) .  

Then P j ( f i ( c )  - E)Pj is  a finite-dimensional operator analytic in E and the eigenvalues 
Ej,*(c) of H ( E )  are found as the dj roots of the equation 

det ( P , ( f i ( ~ )  - E ) P j )  = 0 .  (104) 

The operators Lj(6)  := PjU(e)-' and R,(E) := U(E)P ,  sandwiching H ( E )  in (10.5) satisfy 
certain differential equations involving P ~ ( E )  whose expansion in terms of E is known 
from (94). With the help of these differential equations Lj (c )  and R,(E) can be expanded 
in E as well. The Nth-order approximation in the RayleighSchrodinger series for the 
degenerate case is then obtained by solving (10.5) where terms of order higher than N are 
neglected, We refer the reader to 161 for more details on Kato's rigorous exposition of the 
usual quantum mechanical RayleighSchrodinger perturbation theory. 

As was pointed out in [6] the unitary transformation U(€) exists but is not necessarily 
unique. As we shall see below this non-uniqueness is equivalent to the non-uniqueness of 
the choice of W, mentioned at the end of section 3. 

In order to prove equivalence with the quantum Poincari-von Zeipel method we first 
note that 

@ ( E ) - ]  U(E)Pj = Pj@(E)-l U(€). ( 105) 
In fact, since [ K ( E ) .  Ho] = 0 we may write the orthonormalized eigenvectors of K ( E )  as 

u j ( ~ ) ~ a l j ,  p )  where d ( 6 )  is a dj-dimensional unitary matrix. Hence, the projector 
on the space Eig(K(c), E ~ J E ) )  is 

Since K ( E )  = @ ( ~ ) - ' H ( E ) @ ( E ) ,  one has 

Pj(E) = @ ( E )  Pj @(t)-' (107) 

Z ( E )  := @(€)-I U(€) (108) 

(109) 

which together with (102) proves (106). Equation (106) states that 

is a unitary transformation commuting with all Pj. On the other hand, from 

@ ( E )  K f s )  @ ( E ) - ]  = H ( E )  = U(€) A(€)  U(€)-' 
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it follows that 

which implies that the roots of equation (105) are identical to the roots of 

det(q(K(6)  - E)?)  = 0 ( 1  1 1 )  

and this proves the equivalence of the two methods for the eigenvalue-expansions in the 
presence of degenerate eigenvalues. 

Moreover, as can be seen from (1 11) the eigenvectors of A(€)  are related to those of 
K ( E )  by the unitary transformation Z ( E )  which preserves each eigenspace of Ho. It is likely 
that the non-uniqueness in the choice of W, may be exploited to make Z ( 6 )  trivial [I  I ]  but 
this is still under investigation. 

6. Discussion and conclusion 

Kummer [12] was the first to discuss the averaging method for quantum systems. Based on 
ideas from classical averaging he constructed a perturbation method called the normal form 
approach [I31 which is equivalent to 'time averaging' [12] but instead of using averaging 
to solve (47) and (48) it employs algebraic constructions. 

Motivated by the Birkhoff-Gustavson normal form in classical mechanics Ali [I41 
developed a quantum analogue of this and his construction yields the same expansion as 
that of Kummer. Working explicitly with an alzebra of destruction and creation operators 
Eckhardt [15] also constructed a quantum analogue of the Birkhoff-Gustavson normal 
form. A quantization of the classical Birkhoff-Custavson normal form was attempted by 
Robnik [ZO] but this is necessarily plagued by ordering problems which do not affect our 
work and the other contributions cited above (this is only partly true for 1151). 

The constructions of Kummer, Ali and Eckhardt have in common that the existence 
of the generators of the unitary transformation has to be assumed or assured by certain 
additional conditions. In the present paper the necessary generators W, are (at least formally) 
explicitly constructed. 

In fact, it can be shown [ I l l  that the method of quantum averaging as presented 
here provides explicit solutions in terms of the time averaging integrals for the algebraic 
constructions of Kummer. The algebraic constructions have the advantage of rigorous 
validity but lack constructive procedures needed to execute the algorithm. The approach 
presented here has. apart from its conceptual proximity to the classical situation, the 
advantage of providing explicit constructions. Due to the analytic character of these 
constructions, however, technical problems which are absent in the algebraic approach may 
arise. 

Using a slightly modified quantum averaging (in our sense) for the particular example 
of the quantum anharmonic oscillator, Ben Lemlih and Ellison [I61 have derived rigorous 
error bounds on approximations to the quantum time evolution. 

Their work also contains a suggestion to compare the approximation to the eigenvalues 
of this specific problem to the usual perturbative corrections, i.e. Rayleigh-Schrodinger 
theory. Ali [14] and and Kummer [ 131 have found that in all the examples they have treated 
the normal form perturbative results agree with Rayleigh-Schrodinger theory (incidentally 
this is not true for Robnik's expansions [20]) and Eckhardt also suggests that the Birkhoff- 
Gustavson perturbation expansion is identical to the usual Rayleigh-Schrodinger pertubation 
theory. Our work then provides an explicit proof of this assertion since, as Kummer 
has shown, his normal form approach is equivalent to the averaging method in quantum 
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mechanics, and we have shown that averaging is completely equivalent to the Rayleigh- 
Schrodinger theory yielding the sums over intermediate states in closed forms. 

A very important aspect related to this work @ut not discussed here) is the fact that just 
as in classical mechanics a superconvergent perturbation theory can be constructed with the 
help of averaging, this can be done in quantum mechanics as well and yields a perturbation 
theory explicitly distinct from the usual Rayleigh-Schrodinger theory 19,211. 

Work is in progress to establish the technical conditions necessary to put quantum 
averaging on a rigorous mathematical footing and to determine how the non-uniqueness of 
the W,, may be used to trivialize Z ( E ) .  It may also be possible that standard timedependent 
perturbation techniques (e.g. sudden approximation) can be formulated as analogues of 
classical time-dependent averaging. 
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